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order contributions due to non-zero light quark masses. Relying on the unitarity of the

generalized quark mixing matrix we obtain corrections to the CKM matrix elements. In

this model FCNCs appear at the tree level and using leading order contributions we obtain

the FCNC couplings for the up-like quark transitions. In light of recent experimental

results on the D0 − D̄0 transition we make predictions for xD as well as the D → µ+µ−

decay rate. Finally, we discuss probabilities for the t → c(u)Z transitions relevant for the

LHC studies.
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1. Introduction

The existence of the hierarchy problem within the SM stimulated constructions of many

models of new physics. In the last three decades supersymmetric models offered appealing

solutions to the hierarchy problem, although the existence of susyparticles has not been

confirmed experimentally. During the last few years, the Little Higgs models [1 – 5] have

attracted a lot of attention offering an alternative solution to the hierarchy problem. The

main features of all Little Higgs-like models are that Higgs fields appear as Goldstone

bosons of a global symmetry broken at some new scale. Then they acquire masses and

become pseudo-Goldstone bosons via symmetry breaking at the electroweak scale. The

quadratic divergences in the Higgs mass due to the SM gauge bosons are canceled by the

contributions of the new heavy gauge bosons with spin 1. The divergence due to the top

quark is canceled by the contribution of the new heavy vector-like quark with the charge

2/3 and spin 1/2.

In the simplest model (named the Littlest Higgs model) which has been studied exten-

sively in the literature [6 – 8] the masses of u, d, s, c and b quarks are usually neglected in

comparison with the electroweak symmetry breaking scale. Consequently, some tree-level

FCNCs appear in the up-quark sector, but only coupling the new heavy quark to the top

quark and the Z boson. At the same time only Vtb CKM matrix element receives small

corrections due to CKM non-unitarity. In a generalization of that model given by Lee [9]

mixing of the lighter quarks with the top quark is present. There are two interesting con-

sequences that appear in such a scenario. It allows for Z-mediated FCNCs at the tree-level

in the whole up-quark sector (while not in the down-quark sector). It also extends the

3× 3 CKM matrix in the SM to a 4× 3 matrix and introduces non-unitarity corrections to

all of the CKM matrix elements. Recently, Chen et al. [10] have discussed D − D̄ mixing
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in a similar model, but only after imposing additional assumptions. Namely, in order to

preserve the large up-quark mass hierarchy they assume a special form of the Yukawa ma-

trices, allowing them to constrain the model parameters. Using present errors in the CKM

matrix elements they are able to induce rather large flavor changing effects.

Motivated by the results of these papers we re-investigate the flavor structure of the

Littlest Higgs model (LHM). We perform an eigensystem analysis of the more general LHM

up-quark mass matrix and are able to recover the results of the constrained model [6] as well

as give robust predictions for the more general case. After Introduction, we give a general

analysis of the up-quark Yukawa couplings in section II . Section III contains analysis of

CKM unitarity and FCNCs. Phenomenological consequences are discussed in section IV,

while conclusions are given in section V .

2. LHM up Yukawas and CP violation

We first focus on the simplest LHM, whose phenomenology was first studied by Han et

al. [6]. The light and heavy top quark Yukawa sector of this model is given by eq. (24)

of [6]:

LY =
1

2
λ1fǫijkǫxyχiΣjxΣkyu

′c
3 + λ2f t̃t̃

′c + H.c., (2.1)

where χT = (b3, t3, t̃), ǫijk and ǫxy are antisymmetric tensors, with ijk = 1, 2, 3 and xy =

4, 5. Σ contains the Higgs fields in the adjoint representation of the global LH SU(5)

(c.f. [6] eq. (3)), u
′c
3 and t̃

′c are the two right-handed top fields, while f is the VEV of the

heavy Higgs (f ≃ 1 TeV). Note that λ1,2 are c−numbers in this model implying absence

of mixing of the third generation with the first two generations in the up sector. However,

in this form, the model is also CP conserving, as can be easily deduced by studying weak

basis invariants of the resulting mass matrix [12, 11]. CP is preserved even in presence

of non-diagonal Yukawa terms involving only the first two generations of up-quarks and

regardless of the down-quark sector. In order to provide SM-like sources of CP violation,

one must therefore add further non-diagonal Yukawa terms, mixing the light top quark

with the first two generations, but necessarily not involving the heavy top quark. If we

require that the one-loop top quark contributions to the Higgs mass largely vanish, these

additional Yukawa couplings (we denote them by λu
ij) must be much smaller than λ1. This

leads to a generalized up-quark mass matrix in the weak basis

Mp =











ivλu
11 ivλu

12 ivλu
13 0

ivλu
21 ivλu

22 ivλu
23 0

ivλu
31 ivλu

32 iv(λ1 + λu
33) 0

0 0 fλ1 fλ2











. (2.2)

Lee [9] similarly generalizes the Yukawa part of the model by including a general mixing

pattern in the up-quark sector. In eq. (2.15) of [9] he writes

LY =
1

2
λab

1 fǫijkǫxyχaiΣjxΣkyu
′c
b + λ2f t̃t̃

′c + H.c., (2.3)
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with ab = 1, 2, 3 and χT
i = (bi, ti, δi3t̃). Then the up-quark mass matrix in the weak basis

should become1

Mp =











ivλ11
1 ivλ12

1 ivλ13
1 0

ivλ21
1 ivλ22

1 ivλ23
1 0

ivλ31
1 ivλ32

1 ivλ33
1 0

fλ31
1 fλ32

1 fλ33
1 fλ2











. (2.4)

We see that the mass matrices in the two models apparently differ in the form of their

fourth rows. However, when requiring (partial) cancelation of top quark contributions to

the Higgs mass, both models can be treated equivalently.

We perform an eigensystem analysis of this quark mass sector based on the conjugated

versions of eqs. (24.26) of ref. [11]. Namely we can denote

M†
p =

(

Gp(3×3) Jp(3×1)

0 M̂p

)

, (2.5)

while the down-quark mass matrix Mn is general three-by-three and complex. M̂p is

a c−value and can be made real via suitable phase redefinition of the heavy top field

t̃
′c, while Gp can be made diagonal and real via suitable weak basis transformations

(Gp → diag(vη1, vη2, vη3)). The unitary transformations involved induce corrections to Jp

in terms of mixing of components which we since denote with tilde: JT
p = (fλ̃31

1 , f λ̃32
1 , f λ̃33

1 ).

λ̃3i
1 =

∑

j Lijλ
(3j)
1 with Lij being components of a unitary matrix diagonalizing Gp so that

∑

j |Lij |2 = 1 for any i. We see that the end form of Mp is qualitatively the same for both

models under consideration. The mass eigenvalue equation MpM†
pWp = WpD

2
p, where

Wp =

(

Kp(3×3) Rp(3×1)

Sp(1×3) Tp

)

(2.6)

is a unitary eigenvector matrix and Dp = diag[m̄p(3×3), M̄p] is the diagonal eigenmass

matrix (m̄p = diag(m1,m2,m3)), can then be written as a set of matrix equations [11]

G†
pGpKp + G†

pJpSp = Kpm̄
2
p, (2.7a)

G†
pGpRp + G†

pJpTp = RpM̄
2
p , (2.7b)

J†
pGpKp + (J†

pJp + M2
p )Sp = Spm̄

2
p, (2.7c)

J†
pGpRp + (J†

pJp + M2
p )Tp = TpM̄

2
p , (2.7d)

while the Wp unitary constraint relevant for this discussion reads

R†
pRp + T ∗

p Tp = 1. (2.8)

We start by evaluating eqs. (2.7b) and (2.7d):

RpM̄
2
p = v2diag(η2

1 , η
2
2 , η

2
3)Rp

+vf(η1λ̃
31
1 , η2λ̃

32
1 , η3λ̃

33
1 )T Tp , (2.9a)

TpM̄
2
p = vf(η1λ̃

31∗
1 , η2λ̃

32∗
1 , η3λ̃

33∗
1 )Rp

+f2|λ|2Tp, (2.9b)

1We find a difference in the fourth row calculation of ref. [9].
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where |λ|2 = (|λ̃31
1 |2 + |λ̃32

1 |2 + |λ̃33
1 |2 + |λ2|2). We notice that requiring the heavy top mass

to scale as M̄p ∼ f the two equations can be solved simultaneously provided Rp . Tp in

terms of v/f scaling. Then, to leading order in v/f , the heavy top mass is

M̄2
p = |λ|2f2, (2.10)

while for Rp and Tp we get

Rp =
v

f

1

|λ|2 (η1λ̃
31
1 , η2λ̃

32
1 , η3λ̃

33
1 )T Tp, (2.11a)

|Tp| ≃ 1 − 1

2
R†

pRp = 1 −O(v/f)2 , (2.11b)

where the unitarity constraint together with v/f expansion of the square root has been

used in the last line.

Next we evaluate eqs. (2.7a and 2.7c)

Kpm̄
2
p = v2diag(η2

1 , η
2
2 , η

2
3)Kp + vf(η1λ̃

31
1 , η2λ̃

32
1 , η3λ̃

33
1 )T Sp , (2.12a)

Spm̄
2
p = vf(η1λ̃

31∗
1 , η2λ̃

32∗
1 , η3λ̃

33∗
1 )Kp + f2|λ|2Sp . (2.12b)

Requiring the light up-quark mass eigenvalues to scale as m̄p ∼ v, we can solve both

equations without any fine-tuning provided Sp and Kp have fixed relative scaling in v/f :

Sp ∼ Kpv/f . Then the left hand side of eq. (2.12b) is of higher order in v/f than the right

hand side and can be neglected yielding the relation

Sp = − v

f

1

|λ|2 (η1λ̃
31∗
1 , η2λ̃

32∗
1 , η3λ̃

33∗
1 )Kp . (2.13)

Inserting this expression into eq. (2.12a) yields2

Kpdiag(m2
1,m

2
2,m

2
3) = v2



diag(η2
1 , η

2
2 , η

2
3) −

(

ηiηj λ̃
3i
1 λ̃3j∗

1

|λ|2

)

(3×3)



 Kp , (2.14)

where in this short-hand matrix notation there is no summation over the repeated quark

generation indices. The above matrix equation in full form is given in the appendix.

Next we notice that the off-diagonal elements of the matrix multiplying Kp on the right

hand side of eq. (2.14) are generally smaller than the diagonal ones and tend to zero with

λ̃i3
1 /λ2 → 0. Therefore we approximate the solution, unitary at leading order in v/f , with

a linear expansion around the diagonal, yielding

m2
i = v2η2

i

[

1 − |λ̃3i
1 |2

|λ|2

]

, (2.15a)

(Kp)ij = δij + (δij − 1)
v2ηiηjλ̃

3i
1 λ̃3j∗

1

(m2
i − m2

j)|λ|2
. (2.15b)

2The appearance of the off-diagonal contributions in eq. (2.14) is the direct consequence and main

difference due the different v/f scaling of Jp with respect to the one in section 24.3 of ref. [11].
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Again in eq. (2.15b) there is no summation over repeated quark generation indices and the

full matrix form of Kp in this approximation is given in the appendix. With λ̃31
1 = λ̃32

1 = 0

and λ̃33
1 = η3 = λ1 we reproduce the usual result for the light and heavy top masses in the

simplest model of Han et al. [6] which ensures exact cancelation of top-quark contributions

to the Higgs mass at one loop. Deviations from this limit in terms of non-vanishing λ̃31
1 and

λ̃32
1 on one side reintroduce such corrections, while on the other side they provide needed

sources of SM-like CP violation.

3. CKM unitarity and FCNCs

FCNCs at tree level via flavor changing Z couplings can be easily deduced by evaluating

Zp = A†
pAp, where Ap are the first three rows of Wp or Ap = (Kp, Rp). Then the FCNC

of up-like quarks coupling to the Z boson is JFC
µ = (g/2cW )ūLiγµ(Zp)ijuLj , where g is the

SU(2)L gauge coupling and cW is the cosine of the Weinberg angle. At leading order in

v/f we get off-diagonal elements of Zp only in the fourth column (and row)

(Zp)i4 =
∑

j

(Kp)
∗
ji(Rp)j . (3.1)

FCNCs among the light up-type quarks only come at the order of (v/f)2, are due to 4× 4

up-quark basis unitarity [11] and yield

(Zp)ij = δij − (Zp)
∗
i4(Zp)j4. (3.2)

At the same time we get CKM non-unitary corrections in terms of fourth row CKM

matrix elements, which can be calculated via VCKM = A†
pAn, where An is the 3 × 3 down

quark unitary mixing matrix. In absence of fourth row entries in Mp due to the mixing

with the vector top quark, Ap would just be the identity and the usual form of VCKM = An

would be obtained. Now however, we obtain for the fourth row CKM matrix elements

(VCKM)4i =
∑

k

(Rp)
∗
k(An)ki , (3.3)

while the 3 × 3 non-unitary mixing sub-matrix for the light quarks is, again due to 4 × 4

unitarity

(VCKM)ij =
∑

k

(Kp)
∗
ki(An)kj − (VCKM )∗4i(VCKM)4j . (3.4)

Formulae (3.1)–(3.4) are exact up to v/f corrections, but more importantly regardless of

any approximations to the solution for Kp from eq. (2.14), thus representing faithfully the

generally rich flavor structure of the LH model.

Our treatment leads to qualitatively similar conclusions as found in [9] regarding FC-

NCs, but we disagree in the procedure as well as in the form of the final results. The ap-

proach of [10] on the other hand imposes fine-tuning cancelations among up-quark Yukawa

elements (i.e. requiring cancelation of the two terms in the square brackets in (2.15a) for

the first two generations) in order to obtain relations among them. However not all pa-

rameters feature independently in the mass formulae. By identifying the heavy top mass
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mT = f
√

|λ2|, we find that all expressions only depend on certain combinations: (vηi)

and ei ≡ λ̃3i
1 /

√

|λ2|. Using the first, we can absorb all light Higgs VEV dependence into

light quark masses and mixings, while the second indicates that phenomenologically, the

LH FCNC couplings lie on three-plane intersection of a four-sphere with radius
√

|λ2|.
Therefore we parameterize the moduli of ei using generalized Euler’s angles, projected on

the three-plane (distance from the origin is parameterized by sin γ) α, β, γ: |e1| = |sαsβsγ |,
|e2| = |cαsβsγ |, |e3| = |cβsγ |, where sx = sinx and cx = cos x. Note that, although |ei| are

bounded to lie between 0 and 1, providing sources of SM like CP violation discussed in the

previous section requires at least two of them to be different from zero (the constrained

model of Han corresponds to cβ = 1 or e1 = e2 = 0). At the same time, due to the

orthogonality of projections cx and sx, only one of the |ei| can be set close to 1 at best,

while in addition cancelation of top loop contributions to the Higgs mass requires |e3| to

be much larger than |e1,2|. This eventually rules out a simultaneous mass cancelation via

fine-tuning for the first two generations in eq. (2.15a).

More explicit analytic expressions for CKM corrections and FCNCs in closed form can

then be obtained by keeping only the leading order terms in the off-diagonal expansion of

Kp (i.e. using solutions (2.15a) and (2.15b)) in which case our analysis reverts to the one

of ref. [11]. We obtain

(Zp)i4 ≃ mi

mT

ei
√

1 − |ei|2
≃ (Rp)i , (3.5a)

(Zp)ij ≃ δij −
mimj

m2
T

e∗i
√

1 − |ei|2
ej

√

1 − |ej |2
, (3.5b)

(VCKM )4i ≃
∑

k

mk

mT
(An)ki

e∗k
√

1 − |ek|2

≃
∑

k

mk

mT
(VCKM)ki

e∗k
√

1 − |ek|2
, (3.5c)

(VCKM )ij ≃ (An)ij − (VCKM )∗4i(VCKM)4j . (3.5d)

Actually, due to the large hierarchy in the up quark masses, expansion (2.15b) is always

a good approximation for Kp. This can be seen by parameterizing the off-diagonal ele-

ments of Kp in eq. (2.15b) or (A.3) in terms of generalized Euler’s angles and physical

quark masses. Then due to the orthogonality of the projections ci, si expressions of the

type e∗i ej/
√

1 − |ei|2
√

1 − |ej |2 for i 6= j are always bounded from above by 1, while off-

diagonal elements in Kp are in addition suppressed by small ratios of quark masses among

different generations. Therefore, even if the eigenvalues in eq. (2.15a) receive relatively

large corrections, these are not reflected in large deviations from the diagonality in Kp and

consequently in FCNCs as we will see in the next section.

4. Phenomenology

We first calculate FCNC constraints, given experimentally from CKM non-unitarity [9].

We take the current bounds on the CKM moduli, obtained from tree level processes with-

out referring to 3×3 CKM unitarity [13]. Then the complete 4×4 mixing matrix unitarity

– 6 –
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Figure 1: LHM parameter plane spanned by mT and cβsγ . The shaded region in yellow(grey) is

excluded by present CKM unitarity bounds as explained in the text.

conditions constrain FCNCs through the relation Zp = VCKMV †
CKM [11]. We notice that

the stringiest unitarity bounds on the parameters will come from the top sector due to

large up-quark mass hierarchy, and from the diagonal elements, where the couplings are

not bounded by orthogonality conditions. In particular, the most constraining is the recent

direct lower bound on the magnitude of the Vtb CKM matrix element from the D0 collab-

oration [14] when interpreted in the general models with vector-like singlet top quarks [15]

yielding |Vtb| > 0.71. We write down the most perspective constraints

|(Zp)33| =

∣

∣

∣

∣

∣

1 − m2
t

m2
T

c2
βs2

γ

(1 − c2
βs2

γ)

∣

∣

∣

∣

∣

> 0.52 , (4.1a)

|(Zp)32| =

∣

∣

∣

∣

∣

∣

mtmc

m2
T

sαcβsβs2
γ

√

1 − s2
αs2

βs2
γ

√

1 − c2
βs2

γ

∣

∣

∣

∣

∣

∣

< 0.13 , (4.1b)

|(Zp)31| =

∣

∣

∣

∣

∣

∣

mtmu

m2
T

cαcβsβs2
γ

√

1 − c2
αs2

βs2
γ

√

1 − c2
βs2

γ

∣

∣

∣

∣

∣

∣

< 0.11 , (4.1c)

|(Zp)22| =

∣

∣

∣

∣

∣

1 − m2
c

m2
T

s2
αs2

βs2
γ

1 − s2
αs2

βs2
γ

∣

∣

∣

∣

∣

> 0.63 , (4.1d)

|(Zp)11| =

∣

∣

∣

∣

∣

1 − m2
u

m2
T

c2
αs2

βs2
γ

1 − c2
αs2

βs2
γ

∣

∣

∣

∣

∣

> 0.996 . (4.1e)

Presently only eq. (4.1a) is restrictive enough to be used as any kind of constraint on the

parameters of the model. It excludes a region in the parameter plane spanned by mT and

cβsγ (corresponding to λ1/
√

λ2
1 + λ2

2 in the constrained model) as shown on figure 1.

We see that for heavy top-quark masses above 1 TeV, even this bound is ineffective at

present.

Next we study D − D̄ mixing. A general study of new physics contributions in this

process was recently performed in [16]. For xD = ∆mD/ΓD contribution due to Z mediated

– 7 –
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FCNCs we use the known form

xD =

√
2mD

3ΓD
GF f2

DBD|(Zp)12|2r1(mc,mZ), (4.2)

where the function r1(µ,M) = [αs(M)/αs(mb)]
6/23 ×[αs(mb)/αs(µ)]6/25 accounts for the

one-loop QCD running, GF is the Fermi constant, fD is the D meson decay constant and

BD is the D meson bag parameter. In our numerical evaluation we use PDG [13] values for

quark and Z boson masses, mass and width of the D meson, GF and αs(mZ), while for the

hadronic parameters we take fD = 0.22 GeV [17] from CLEO-c measurement and BD =

0.82 [18] from a quenched lattice study. After evaluating these known quantities we obtain

xD = 2 × 105|(Zp)12|2

≃ 3 × 10−12

∣

∣

∣

∣

∣

∣

sαcαs2
βs2

γ
√

1 − c2
αs2

βs2
γ

√

1 − s2
αs2

βs2
γ

(

1 TeV

mT

)2
∣

∣

∣

∣

∣

∣

2

. (4.3)

We have to compare this expression with the recent experimental results from the B-

factories [19, 20], which give a value of xD = 0.0087 ± 0.003 [21]. Similarly for the rare

D → µ+µ− decay width, we use the known form for Z mediated FCNC contribution

Γ(D0 → µ+µ−) =
mD

64π

(

GF√
2

)2

|(Zp)12|2f2
Dm2

µ

√

1 −
4m2

µ

m2
D

, (4.4)

and obtain

Br(D0 → µ+µ−) = 3 × 10−4|(Zp)12|2

≃ 3 × 10−21

∣

∣

∣

∣

∣

∣

sαcαs2
βs2

γ
√

1 − c2
αs2

βs2
γ

√

1 − s2
αs2

βs2
γ

(

1 TeV

mT

)2
∣

∣

∣

∣

∣

∣

2

, (4.5)

again to be compared to the current experimental limit Br(D0 → ℓ+ℓ−) < 1.2 × 10−6 [22]

from BaBar. We see that in both processes, the LHM contributions at tree level are neg-

ligible. Note however, that due to the same FC Z coupling appearing in both eqs. (4.3)

and (4.5) a general upper bound prediction for the Br(D0 → µ+µ−) mediated by such

effective couplings can be made. Namely, saturating the measured value of xD with the

short distance contribution in the first line of eq. (4.3) we obtain an upper bound on

|(Zp)12| < 2 × 10−4 and consequently Br(D0 → µ+µ−)Zp
< 2 × 10−11. The rare D decays

due to c → uZ transitions are then also very suppressed as already noticed in [23, 21].

Therefore we only give predictions for the t → cZ and t → uZ decay rates. In the SM

these transitions are highly suppressed and their branching ratios are of the order O(10−10)

or less [24]. On the other hand, current experimental constraints on these transitions are

not very strong [25]. Following [24, 9], we normalize the decay width

Γ(t → c(u)Z) =
m3

t

16π

GF√
2
|(Zp)32(1)|2f(xZ , xc), (4.6)
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where f(x, y)=[(1− y)2 − 2x2 + x(1+ y)]λ1/2(x, y), λ1/2(x, y)=
√

1+y2+x2−2xy−2x−2y

and xi = m2
i /m

2
t , to the dominant t → bW decay rate [26, 24]

Γ(t → bW ) =
m3

t

8π

GF√
2
|Vtb|2f(xW , xb), (4.7)

and obtain for the branching ratios approximately

Br(t → cZ) . 0.5

∣

∣

∣

∣

(Zp)32
Vtb

∣

∣

∣

∣

2

≃ 5 × 10−8

∣

∣

∣

∣

∣

∣

sαcβsβs2
γ

√

1 − c2
βs2

γ

√

1 − s2
αs2

βs2
γ

(

1 TeV

mT

)2
∣

∣

∣

∣

∣

∣

2

, (4.8)

and

Br(t → uZ) . 0.5

∣

∣

∣

∣

(Zp)31
Vtb

∣

∣

∣

∣

2

≃ 2 × 10−13

∣

∣

∣

∣

∣

∣

cαcβsβs2
γ

√

1 − c2
αs2

βs2
γ

√

1 − c2
βs2

γ

(

1 TeV

mT

)2
∣

∣

∣

∣

∣

∣

2

, (4.9)

where in the last lines of eqs. (4.8) and (4.9) we have again used the lower bound on |Vtb|
from [15].

5. Conclusions

We have reinvestigated the LH model of Lee [9] by applying general constraints on extra

vector-like quark singlet models given in ref. [11]. Namely, we have discussed the appear-

ance of tree level FCNCs and CKM unitarity violation in a LHM with general Yukawa

couplings and shown that, contrary to previous conclusions, the up-quark flavor changing

Z couplings are not proportional to the CKM matrix elements. Instead they are pro-

portional to ratios of up-quark masses relative to the heavy top quark mass and can be

parameterized in terms of three new angle parameters. Due to the large constraints on the

heavy top quark mass, these tree level contributions are found to be negligible even when

compared to SM loop contributions. Contrary to the derivation of Chen et al. [10], we do

not impose any fine-tuning and cancelations among the various Yukawa matrix elements

in order to obtain the measured up-quark masses. On the other hand, our analysis shows,

that mass relation between the light and heavy top quark, ensuring the exact cancelation of

one-loop contributions to the Higgs mass, is not maintained in the general model. Relaxing

this requirement could have important effects on the currently established heavy top quark

mass limits from low energy phenomenology.
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A. Full forms of quark mass diagonalization formulae

Here we give the matrix formulae given in short-hand notation in eqs. (2.14) and (2.15b)

in their full form and by using the parametrization in terms of ei = λ̃3i
1 /|λ| parameters.

Matrix eq. (2.14) for Kp reads

Kp.







m2
1 0 0

0 m2
2 0

0 0 m2
3






= v2







η2
1(1 − |e1|2) −η1η2e1e

∗
2 −η1η3e1e

∗
3

−η1η2e2e
∗
1 η2

2(1 − |e2|2) −η2η3e2e
∗
3

−η1η3e3e
∗
1 −η2η3e3e

∗
2 η2

3(1 − |e3|2)






.Kp , (A.1)

with the approximate solutions for Kp of the form

Kp =











1 −v2η1η2e1e∗
2

(m2

1
−m2

2
)

−v2η1η3e1e∗
3

(m2

1
−m2

3
)

−v2η1η2e2e∗
1

(m2

2
−m2

1
)

1 −v2η2η3e2e∗
3

(m2

2
−m2

3
)

−v2η1η2e3e∗
1

(m2

3
−m2

1
)

−v2η2η3e3e∗
2

(m2

3
−m2

2
)

1











. (A.2)

We remaind the reader that in this approximation the light up-quark masses are given by

mi = vηi

√

1 − |ei|2. Then due to the large measured mass hierarchy in the up-quark sector

we have approximately

Kp ≃







1 m1

m2
ê1ê

∗
2

m1

m3
ê1ê

∗
3

−m1

m2
ê2ê

∗
1 1 m2

m3
ê2ê

∗
3

−m1

m3
ê3ê

∗
1 −m2

m3
ê3ê

∗
2 1






, (A.3)

where we have used êi = ei/
√

1 − |ei|2.
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